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A pulse fishery is one where fishing occurs during a short period each year and is zero for the rest of the year. Grüss et al. proposed a
continuous per-recruit model for such fisheries. However, this analysis is based on per-recruit equations that were derived under the
assumption that fishing mortality is constant in time and, thus, do not apply to fisheries where F varies, such as a pulse fishery. A correct
continuous per-recruit formulation for pulse fisheries is derived. In most cases, the continuous per-recruit model can be closely approximated
by a discrete model, where the integrals are replaced by sums. A modification in the Baranov catch equation for pulse fisheries is also derived
that can used to compute annual exploitation rates.
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A fishery where fishing occurs during a short period each year but

is zero for the rest of the year is termed a pulse fishery. Grüss

et al. (2020) proposed a continuous per-recruit model for such

fisheries. However, the basis for their analysis, their (1)–(3), is

only valid when fishing mortality is constant in time and, hence,

does not apply to fisheries where F varies, such as a pulse fishery.

All of their subsequent results are based on these equations and

are therefore also incorrect. The purpose of this note is to derive

a proper per-recruit formulation for a pulse fishery.

The per-recruit model tracks a cohort starting at age a0 and

ending at age af ¼ a0 þ n. When the cohort is between ages ak

and akþ1 (k ¼ 0; 1; . . . ; n� 1Þ, it will be assumed that there is a

pulse of fishing between ages ak þ pstart and ak þ pend, where

0 � pstart < pend � 1, during which time fishing mortality F is

equal to a constant Fk, with F¼ 0 for all other times. Fishing mor-

talities are allowed to differ by year to take into account fishery

selectivity by age.

Let S(a) be the fraction of the cohort remaining at age a, with

Sða0Þ ¼ 1. Then, the per-recruit equations for this situation are

(Quinn and Deriso 1999, p. 255):

SðaÞ ¼ exp �
ða

a0

ZðtÞdt

" #
; (1)

b ¼
ðaf

a0

SðaÞGðaÞda; (2)

y ¼
ðaf

a0

FðaÞSðaÞW ðaÞda; (3)

where Z ¼ F þM is total mortality, M is natural mortality, G(a)

is some measure of fecundity (e.g. weight at age, weight times

fraction mature at age, or the probability density of the number

of eggs released at age a), W(a) is weight at age, b is biomass

per recruit (or spawning stock biomass per recruit or eggs per

recruit), and y is yield per recruit.

Note that if F and M are constants, SðaÞ ¼ expð�Z ½a � a0�Þ,
which can be expressed as expð�F½a � a0�Þ expð�M ½a � a0�Þ as

in (1) and (2) of Grüss et al. (2020). Also, if F is constant, it can

be pulled outside the integral in (3), as was done in (2) of Grüss

et al. However, SðaÞ 6¼ expð�Z ½a � a0�Þ when Z is not constant,
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such as in a pulse fishery. In particular, S(a) declines faster during

the fishing pulses than when no fishing is occurring, and hence is not

a simple exponential (Figure 1). Because expð�F½a � a0�Þ ¼ 1 dur-

ing the period when there is no fishing (i.e. F¼ 0), expð�Z ½a � a0�Þ
may not even be a decreasing function of age as is required for a

survival function. In addition, when F is not constant, it cannot be

pulled outside of an integral.

The integral in (3) can usually be well approximated by a sum.

Because in a pulse fishery, F(a) ¼ 0 except between ages ak þ
pstart and ak þ pend, (3) can be written as:

y ¼
Xn�1

k¼0

Fk

ðakþpend

akþpstart

SðaÞW ðaÞda: (4)

The time elapsed in year ak when there is fishing, s, which can

be computed as s ¼ ak þ pend � ðak þ pstartÞ ¼ pend � pstart, is

typically short. Thus, the weight at age during the fishery in

that year can be closely approximated by a constant Wk,

the weight at age at the midpoint of the fishing period:

Wk ¼ W ðak þ pstart þ s=2Þ. Also, if M is assumed to be constant,

as will be done for the rest of this note, then while the

fishery is occurring in year k,

SðaÞ ¼ SðakÞe�Mpstart e�ðFkþMÞða�ak�pstartÞ: (5)

Substituting (5) into (4) and approximating W(a) inside the

integral with Wk gives:

y ¼
Xn�1

k¼0

FkWkSðakÞe�Mpstart

ðakþpend

akþpstart

e�ðFkþMÞða�ak�pstartÞda: (6)

Setting Sk ¼ SðakÞ and computing the integral gives:

y ¼
Xn�1

k¼0

FkWkSke�Mpstart

Fk þM
ð1� e�ðFkþMÞsÞ: (7)

Equation (7) can be expressed using (annual) exploitation

rates Ek, that represents the fraction of fish that were alive in the

beginning of year k and were landed during that year. This can be

computed as:

Ek ¼ e�Mpstart

ðs

0

Fke�ðFkþMÞt dt ¼ Fke�Mpstart

Fk þM

�
1� e�ðFkþMÞs

�
: (8)
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Figure 1. Actual survival at age starting at age 5 (black solid line), compared to the survival function (dashed red line) used by Grüss et al.
(2020), and, for integer ages, Erisman et al. (2020), when the fishing pulse occurs in the beginning (a), middle (b), or end (c) of the year. The
pulse is assumed to last for s¼0.05 years, with Fk ¼ 20 during the pulse. Natural mortality is set at M¼ 0.26.
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The formula given for exploitation rates in Grüss et al. (2020),

their (3), is based on the Baranov catch equation. This equation

represents the exploitation rate over a unit time period (annual in

this example) under the assumption that F and M are constant

over that time period (Quinn and Deriso 1999, pp. 11–12). Since

F is not constant for a pulse fishery, this equation is not valid in

this case. Note that (8) reduces to the Baranov catch equation

based formula under the assumption that F is constant during the

year, i.e. pstart ¼ 0; pend ¼ 1 and thus s¼ 1.

Substituting (8) into (7) gives:

y ¼
Xn�1

k¼0

SkWkEk : (9)

The survival at age, Sk, can be computed recursively for each

k ¼ 0; 1; . . . using:

Skþ1 ¼ Ske�M�Fks; (10)

or equivalently

Sk ¼ expð�kM �
Xk�1

i¼0

FisÞ; S0 ¼ 1: (11)

Both Erisman et al. (2020) and Grüss et al. (2020) attempt to use

the exploitation rates Ek to compute survival at age. In the discrete

Erisman et al. (2020) model, they effectively replaced (10) with

Skþ1 ¼ Ske�M ð1� EkÞ: (12)

This is a good approximation only if the pulse occurs at the be-

ginning of the year and is short; if the pulse occurs later in the

year, 1� Ek is greater than e�Fks by about e�ðpstartþs=2ÞM

(Figure 1), which would cause yield and biomass per recruit to be

overestimated. Grüss et al. (2020) modelled survival essentially as

the continuous analog of (12):

SðaÞ ¼ SðaOAÞe�Mða�aOAÞð1� EÞða�aOAÞ; a � aOA; (13)

where aOA is the age of full recruitment to the fishery. This pre-

dicts a simple exponential decline in survival that ignores the

pulse nature of the fishery. If the fishing pulse is at the beginning

of each year, using (13) will typically overestimate survival

(Figure 1a). When the pulse is later, the situation is more com-

plex since this equation sometimes overestimates and sometimes

underestimates survival (Figure 1b and c). In any case, the correct

survival function can be easily calculated using (1). For a pulse

fishery, the level of fishing mortality induced by a given exploita-

tion rate depends on the length and timing of the pulse (8), so

that survival cannot be precisely predicted by the exploitation

rate alone as was attempted in (12) and (13).

Example yield-per-recruit curves for Gulf corvina (Cynoscion

othonopterus) are plotted in Figure 2. These use the same parame-

ters as in Table 1 of Grüss et al. (2020), with a0 ¼ 2, af ¼ 20,

s ¼ 0:05, Fk ¼ 0 for the first 3 years of the simulation (when the

fish are ages 2, 3, and 4) with the Fks corresponding to the speci-

fied exploitation rate afterwards. Age-based yield per recruit is

usually computed using a fixed weight at each age, which is rea-

sonable when F is constant. However, if that approach is taken in

a pulse fishery, it will often predict substantially lower yield per

recruit if the fishery takes place late in the year compared to the

beginning (Figure 2a) due to a nearly an extra year of natural

mortality. In reality, growth and natural mortality operate contin-

uously, so the additional growth allowed by the fishery operating

later in the year will at least partially counteract the additional

natural mortality. When growth is taken into account, so that the

weight is taken as Wk, as defined above, it is seen that, at least in

this case, the timing of the fishery has only a small effect on yield

per recruit (Figure 2b). Note also that at a fixed Fk, exploitation

rates are lower when the pulse occurs later in the year [by a factor

e�Mpstart according to (8)].

The yield per recruit computed here is about twice that calcu-

lated by Erisman et al. (2020). Assuming the pulse occurs in the

beginning of the year and an exploitation rate of zero for

ages 2–4 and one for age 5, so all fish are removed at age

five, yield per recruit can be simply calculated as

y ¼ expð�3MÞW ð5Þ ¼ 0:458� 3200 ¼ 1466, which agrees with

Figure 2 at E¼ 1 but not with Erisman et al. (2020).

Spawning often occurs during a short period each year. If this

is the case, and spawning occurs at age ak þ pspawn each year, bio-

mass per recruit (or its variants) can also be well approximated
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Figure 2. Yield-per-recruit curves using (a) fixed weight at age and (b) weights at age Wk that depend on the time within a year when the
fishing pulse occurs (beginning of the year, solid blue line; middle of the year, dashed purple line; end of the year, dash-dotted red line).
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by a sum. Let Gk be the weight (or weight times fraction mature,

or number of eggs released), at this spawning time in year k.

Then, biomass (or spawning biomass or eggs) per recruit b can be

expressed as:

b ¼
Xn�1

k¼0

Sðak þ pspawnÞGk : (14)

Note that Sðak þ pspawnÞ ¼ Sk expð�MpspawnÞ if pspawn < pstart

and Sðak þ pspawnÞ ¼ Sk expð�Mpspawn � FksÞ if pspawn > pend, so

(14) takes into account whether spawning occurred before or

after the fishery. Similar ideas can be applied to the case where

the fish spawn multiple times during the year.

Classical fishery theory is typically based on the assumption

that F (as well as M) is constant with age. This assumption does

not hold in many real fisheries, as in the pulse fisheries discussed

here, or in rotational fisheries (e.g. Hart 2003). Even in fisheries

where there is no explicit time-varying management, F can vary

over time due to, for example changes in resource or economic

conditions, or seasonal weather patterns. Thus, it is of interest to

extend fisheries theory to include situations where F varies in

time, such as what was attempted by Grüss et al. (2020) for pulse

fisheries. However, care must be taken to assure that such analysis

is not based on any result that depends on F being constant.
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