I ( ES International Council for
the Exploration of the Sea
c I E M Conseil International pour
I'Exploration de la Mer

IENCeE
=

ICES Journal of Marine Science (2021), 78(6), 2146—2149. doi:10.1093/icesjms/fsab042

Comment

Per-recruit modelling of pulse fisheries: comment on “Modelling
pulse fishery systems in data-limited situations”

Deborah R. Hart ® *
NOAA Northeast Fisheries Science Center, Woods Hole, MA 02543, USA
*Corresponding author: tel: +1 508 495 2369; e-mail: deborah.hart@noaa.gov.

Hart, D. R. Per-recruit modelling of pulse fisheries: comment on “Modelling pulse fishery systems in data-limited situations”. — ICES
Journal of Marine Science, 78:2146-2149.

Received 19 January 2021; revised 19 January 2021; accepted 13 February 2021; advance access publication 20 June 2021.

A pulse fishery is one where fishing occurs during a short period each year and is zero for the rest of the year. Griiss et al. proposed a
continuous per-recruit model for such fisheries. However, this analysis is based on per-recruit equations that were derived under the
assumption that fishing mortality is constant in time and, thus, do not apply to fisheries where F varies, such as a pulse fishery. A correct
continuous per-recruit formulation for pulse fisheries is derived. In most cases, the continuous per-recruit model can be closely approximated
by a discrete model, where the integrals are replaced by sums. A modification in the Baranov catch equation for pulse fisheries is also derived

that can used to compute annual exploitation rates.
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A fishery where fishing occurs during a short period each year but
is zero for the rest of the year is termed a pulse fishery. Griiss
et al. (2020) proposed a continuous per-recruit model for such
fisheries. However, the basis for their analysis, their (1)—(3), is
only valid when fishing mortality is constant in time and, hence,
does not apply to fisheries where F varies, such as a pulse fishery.
All of their subsequent results are based on these equations and
are therefore also incorrect. The purpose of this note is to derive
a proper per-recruit formulation for a pulse fishery.

The per-recruit model tracks a cohort starting at age a, and
ending at age af = ap + n. When the cohort is between ages ay
and axyy (k=0,1,...,n— 1), it will be assumed that there is a
pulse of fishing between ages ai + psare and ax + Pend> Where
0 < Ppsart < Pend < 1, during which time fishing mortality F is
equal to a constant Fy, with F=0 for all other times. Fishing mor-
talities are allowed to differ by year to take into account fishery
selectivity by age.

Let S(a) be the fraction of the cohort remaining at age 4, with
S(ag) = 1. Then, the per-recruit equations for this situation are
(Quinn and Deriso 1999, p. 255):

S(a) = exp |:— r Z(t)dt|, (1)
a

b= J S(a)G(a)da, (2)
a

y= | Fas@waa, ®

where Z = F + M is total mortality, M is natural mortality, G(a)
is some measure of fecundity (e.g. weight at age, weight times
fraction mature at age, or the probability density of the number
of eggs released at age a), W(a) is weight at age, b is biomass
per recruit (or spawning stock biomass per recruit or eggs per
recruit), and y is yield per recruit.

Note that if F and M are constants, S(a) = exp(—Z[a — ay]),
which can be expressed as exp(—F[a — ag]) exp(—Mla — ay]) as
in (1) and (2) of Griiss et al. (2020). Also, if F is constant, it can
be pulled outside the integral in (3), as was done in (2) of Griiss
et al. However, S(a) # exp(—Z[a — ay]) when Z is not constant,
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such as in a pulse fishery. In particular, S(a) declines faster during
the fishing pulses than when no fishing is occurring, and hence is not
a simple exponential (Figure 1). Because exp(—F[a — ap]) = 1 dur-
ing the period when there is no fishing (i.e. F=0), exp(—Z[a — a])
may not even be a decreasing function of age as is required for a
survival function. In addition, when F is not constant, it cannot be
pulled outside of an integral.

The integral in (3) can usually be well approximated by a sum.
Because in a pulse fishery, F(a) = 0 except between ages aj +
Dstart and ax + Pend> (3) can be written as:

n-1 A+Pend
y=Y m[ " s@wiada )
k=0

Akt Pstare

The time elapsed in year a; when there is fishing, 7, which can
be ComPUted aS T = Ak + Pend — (ak + pstart) = Pend — Pstart> is
typically short. Thus, the weight at age during the fishery in
that year can be closely approximated by a constant W,
the weight at age at the midpoint of the fishing period:
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S(a) = S(ag)e Mposr g~ (Bt M)(a=ax—puan) (5)

Substituting (5) into (4) and approximating W(a) inside the
integral with W gives:

n—1 A+ Pend

y =3 FWiS(a)e Mo J
k=0

e~ (FerM)(a—a—puar) 4 . (6)
A+ Pstart

Setting St = S(ax) and computing the integral gives:

n—1 — Mi
Fk Wk Sk e~ Mbstart
y=) — o (-

—(Fe+M)t 7
F,+M ) @

k=0

Equation (7) can be expressed using (annual) exploitation
rates Ej, that represents the fraction of fish that were alive in the
beginning of year k and were landed during that year. This can be
computed as:

Wi = W{(ak + pstart + 7/2). Also, if M i.s assumed to be co.nstant, B, — ¢ Mo T Fye-(FHMigy _ FeMpuan (1 (e ) ®
as will be done for the rest of this note, then while the 0 F,+M
fishery is occurring in year k,
(a) (b)
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Figure 1. Actual survival at age starting at age 5 (black solid line), compared to the survival function (dashed red line) used by Grtiss et al.
(2020), and, for integer ages, Erisman et al. (2020), when the fishing pulse occurs in the beginning (a), middle (b), or end (c) of the year. The
pulse is assumed to last for T=0.05 years, with F, = 20 during the pulse. Natural mortality is set at M = 0.26.
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The formula given for exploitation rates in Griiss et al. (2020),
their (3), is based on the Baranov catch equation. This equation
represents the exploitation rate over a unit time period (annual in
this example) under the assumption that F and M are constant
over that time period (Quinn and Deriso 1999, pp. 11-12). Since
F is not constant for a pulse fishery, this equation is not valid in
this case. Note that (8) reduces to the Baranov catch equation
based formula under the assumption that F is constant during the
year, i.e. psart = 0, pend = 1 and thus t=1.

Substituting (8) into (7) gives:

n—1
y= Sk WiEx. 9)
k=0

The survival at age, Sy, can be computed recursively for each
k=0,1,... using:

Ski1 = Sge MR (10)
or equivalently
k-1
Sk = exp(—kM — ZF,“L’), So=1. (11)

i=0

Both Erisman et al. (2020) and Griiss et al. (2020) attempt to use
the exploitation rates E; to compute survival at age. In the discrete
Erisman et al. (2020) model, they effectively replaced (10) with

Sk = Ske™(1 — Ey). (12)

This is a good approximation only if the pulse occurs at the be-
ginning of the year and is short; if the pulse occurs later in the
year, 1— E; is greater than e’ by about e (Puntt/2)M
(Figure 1), which would cause yield and biomass per recruit to be
overestimated. Griiss et al. (2020) modelled survival essentially as
the continuous analog of (12):

S(a) = S(aoa)e M0 (1 — B g > ag,,  (13)
where ap, is the age of full recruitment to the fishery. This pre-
dicts a simple exponential decline in survival that ignores the
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pulse nature of the fishery. If the fishing pulse is at the beginning
of each year, using (13) will typically overestimate survival
(Figure la). When the pulse is later, the situation is more com-
plex since this equation sometimes overestimates and sometimes
underestimates survival (Figure 1b and c). In any case, the correct
survival function can be easily calculated using (1). For a pulse
fishery, the level of fishing mortality induced by a given exploita-
tion rate depends on the length and timing of the pulse (8), so
that survival cannot be precisely predicted by the exploitation
rate alone as was attempted in (12) and (13).

Example yield-per-recruit curves for Gulf corvina (Cynoscion
othonopterus) are plotted in Figure 2. These use the same parame-
ters as in Table 1 of Griiss et al. (2020), with ay = 2, ag = 20,
7 = 0.05, F; = 0 for the first 3 years of the simulation (when the
fish are ages 2, 3, and 4) with the Fy, corresponding to the speci-
fied exploitation rate afterwards. Age-based yield per recruit is
usually computed using a fixed weight at each age, which is rea-
sonable when F is constant. However, if that approach is taken in
a pulse fishery, it will often predict substantially lower yield per
recruit if the fishery takes place late in the year compared to the
beginning (Figure 2a) due to a nearly an extra year of natural
mortality. In reality, growth and natural mortality operate contin-
uously, so the additional growth allowed by the fishery operating
later in the year will at least partially counteract the additional
natural mortality. When growth is taken into account, so that the
weight is taken as W, as defined above, it is seen that, at least in
this case, the timing of the fishery has only a small effect on yield
per recruit (Figure 2b). Note also that at a fixed F;, exploitation
rates are lower when the pulse occurs later in the year [by a factor
e Mpsart according to (8)].

The yield per recruit computed here is about twice that calcu-
lated by Erisman et al. (2020). Assuming the pulse occurs in the
beginning of the year and an exploitation rate of zero for
ages 2—4 and one for age 5, so all fish are removed at age
five, yield per recruit can be simply calculated as
y = exp(—3M)W(5) = 0.458 x 3200 = 1466, which agrees with
Figure 2 at E=1 but not with Erisman et al. (2020).

Spawning often occurs during a short period each year. If this
is the case, and spawning occurs at age dx + Pspawn €ach year, bio-
mass per recruit (or its variants) can also be well approximated
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Figure 2. Yield-per-recruit curves using (a) fixed weight at age and (b) weights at age W, that depend on the time within a year when the
fishing pulse occurs (beginning of the year, solid blue line; middle of the year, dashed purple line; end of the year, dash-dotted red line).
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by a sum. Let G be the weight (or weight times fraction mature,
or number of eggs released), at this spawning time in year k.
Then, biomass (or spawning biomass or eggs) per recruit b can be
expressed as:

—

n—

b= S(ak + pspawn)Gk~ (14)
0

o~
Il

Note that S(ak + pspawn) =S exp(_Mpspawn) if Pspawn < PDstart
and S(ax + pspawn) = Sk €Xp(—MpPspawn — FiT) if Pspawn > Pend> O
(14) takes into account whether spawning occurred before or
after the fishery. Similar ideas can be applied to the case where
the fish spawn multiple times during the year.

Classical fishery theory is typically based on the assumption
that F (as well as M) is constant with age. This assumption does
not hold in many real fisheries, as in the pulse fisheries discussed
here, or in rotational fisheries (e.g. Hart 2003). Even in fisheries
where there is no explicit time-varying management, F can vary
over time due to, for example changes in resource or economic
conditions, or seasonal weather patterns. Thus, it is of interest to
extend fisheries theory to include situations where F varies in
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time, such as what was attempted by Griiss et al. (2020) for pulse
fisheries. However, care must be taken to assure that such analysis
is not based on any result that depends on F being constant.
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